A sixth-harmonic magnetron cavity gyrotron has been built and is in the testing stage at UCD that is excited by a 70 kV, 3.5 A, axis-encircling electron beam produced by a state-of-the-art Northrop Grumman Cusp gun.

The W-Band slotted sixth-harmonic gyrotron is predicted to generate 40 kW with a device efficiency of 16%.

This research has been supported by AFOSR under Grant F49620-99-1-0297 (MURI MVE).
W-Band Sixth-Harmonic Gyrotron

<table>
<thead>
<tr>
<th>Objectives</th>
<th>12-Vane Slotted Circuit</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Reduce magnetic field needed by 91 GHz gyrotrons in order to make HPM systems lighter and more practical</td>
<td></td>
</tr>
<tr>
<td>• Develop 25-100 kW W-band high harmonic gyrotron</td>
<td></td>
</tr>
<tr>
<td>• Basis for high-harmonic gyro-amplifiers</td>
<td></td>
</tr>
</tbody>
</table>

Approach

- Operation at s^{th}-harmonic reduces magnetic field by factor of s
- Slotted circuit enhances interaction
- Cusp gun produces needed axis-encircling electron beam

Accomplishments

- Received two Northrop Cusp guns
- 91 GHz 6th-harmonic gyrotron design
 - 50 kW with 20% efficiency
 - Circuit has been fabricated
- 94 GHz 8th-harmonic gyrotron design
 - Employs permanent magnet
Motivation -- 91 GHz Sixth-Harmonic Gyrotron

• Why 91 GHz?
 - Low attenuation in atmosphere

• Why Gyrotron?
 - Proven high efficiency source

• Why High Harmonic?
 - Reduces magnetic field requirement by harmonic number

Applications of Lightweight 91 GHz Sixth-Harmonic Gyrotron

• High resolution radar
• Radar tracking of space debris
• Atmospheric sensing, e.g., ozone mapping
• Material processing, e.g., high quality ceramics
Synchronism

Derivation of Harmonic Gyrotron Resonance Condition

\(\text{TE}_{m1} \text{ Wave: } E_\theta = E_o J'_m (k_r r) e^{-i(\omega t - k_\| z - m\theta)} \)

For Synchronism:

\((\omega t - k_\| z - m\theta) = \text{constant} \)

\[\frac{d}{dt} [\omega t - k_\| z - m\theta] = [\omega - k_\| \Omega - m\Omega_c] = 0 \]

Use: \(\theta = \Omega_c, \parallel = v_\parallel \)

Yields: \(\omega = m\Omega_c + k_\| v_\parallel \)
Electron Bunching

Axis-Encircling Beam Interacting with TE_{41} Mode

Beam progression through cavity leading to saturation
Slotted π Mode

Axis-encircling electrons interacting with 12 vane slotted circuit

Slotted cavity provides
- Stronger interaction
- Higher device efficiency
- Lower start-oscillation current

π-mode yields strongest interaction
Projection Description / Overview

Innovative Sixth-Harmonic Slotted Gyrotron is under Development
- 91 GHz
- 50 kW
- 16% efficiency

Fabricated 91 GHz Gyrotron Circuit
UCD Slotted Cavity

Circuit Cross Section

Fabricated by Electric Discharge Machining
Frequency Scan of Modes in Slotted Cavity

- Cavity modes were measured using transmission through two sidewall couplers
- Lowest order axial mode for each series is shown below
Device will Generate 91 GHz Only

Dispersion Diagram

Modes in UCD Slotted Circuit

Mode Selection:
For axis-encircling electrons, interaction only for $m = s$
Predicted Gyrotron Power Curve

Fast-Timescale Large-Signal Code was Employed to Evaluate Slotted Gyrotron

6th Harmonic Output Power

![Graph showing 6th harmonic output power with efficiency and power output as variables.]

Parameters:
- Beam Voltage: 70 kV
- Beam Current: 3.5 A
- Velocity Ratio, v_\perp/v_z: 2.0
- Velocity Spread, $\Delta v_z/v_z$: 10%
- Magnetic Field: 6.2 kG
- Number of Vanes: 12
- Vane Depth, b/a: 1.25
- Inner Vane Radius, a: 1.9 mm
- Cavity Length, L: 3.1 cm
- Unloaded Q, Q_o: 3500
- Loaded Q, Q_L: 950
- Efficiency, Electron: 22%
- Efficiency, Device: 16%
- Efficiency, Depressed: 32%

40 kW Output Power is Predicted
Diffraction Coupled Cavity

Cavity π-Mode Transforms into TE$_{61}$ Mode as Slotted Circuit Tapers into Smooth Bore

Axis-Encircling Electron Beam

Cutoff Drift Tube

Slotted Cavity

Output Taper

Spent Electron Beam

RF Output

Smooth-Bore Output Tube
Cavity and Taper

Slotted Cavity

Output Taper
$\text{TE}_{61}/\text{TE}_{11}$ Beat-Wave Mode Converter

TE_{61} Output Wave will be Transformed into Lowest Order TE_{11} Mode

Mode Converter is the Beat Wave between Input and Output Waves

Previous $\text{TE}_{61}/\text{TE}_{11}$ Mode Converter Yielded 98% Efficiency

Schematic of $m=7$ Converter

Predicted Bandwidth ($\eta=93\%$)
Northrop Grumman Cusp Gun

State-of-the-art Cusp Gun will produce axis-encircling electron beam for UCD sixth-harmonic gyrotron
Cusp Gun Electron Trajectory

Simulation of cusp electron gun profile

Parameters: 70 kV, 3.5 A, $v_{\perp}/v_z = 1.5$, $\Delta v_z/v_z = 5\%$
Refrigerated Superconducting Magnet
Superconducting Magnet

Cusp Magnetic Gradient is Produced by
- Two Superconducting Coils and
- Two Copper Coils

![Graph showing the cusp magnetic gradient produced by two superconducting coils and two copper coils. The graph has a y-axis labeled 'Total' and an x-axis labeled 'z (cm).' The graph shows a combination of curves representing the magnetic gradient at different points along the z-axis.]
Future Work: Permanent Magnet 94 GHz Gyrotron

Eighth-Harmonic Gyrotron Can Employ Permanent Magnet to Generate 94GHz

Parameters

- Beam Voltage: 70 kV
- Beam Current: 3.5 A
- Velocity Ratio, v_\perp/v_z: 2.0
- Velocity Spread, $\Delta v_z/v_z$: 10%
- Magnetic Field: 4.6 kG
- Number of Vanes: 16
- Vane Depth, b/a: 1.22
- Inner Vane Radius, a: 2.4 mm
- Cavity Length: 2.5 cm
- Unloaded Q, Q_o: 3000
- Loaded Q, Q_L: 1000
- Efficiency, Electron: 13%
- Efficiency, Device: 9%
- Efficiency, Depressed: 20%

20 kW Output Power is Predicted
Summary

• High Harmonic Operation Reduces Magnetic Field Requirement

• Axis-Encircling Beam is Ideal for High Harmonic Interaction

• Slotted Cavity Provides Strong Beam/Wave Coupling

• Innovative Sixth-Harmonic Slotted Gyrotron has Been Designed
 - 91 GHz
 - 40 kW
 - 16% predicted efficiency

• Sixth-Harmonic Slotted Gyrotron has been Fabricated and is Under Test
 - Super-conducting magnet is being used to test gyrotron
 - Northrop Grumman Cusp Gun has been acquired
 - Cusp Gun will produce axis-encircling beam for the device