Terahertz-Regime, Micro-VEDs: Evaluation of Micromachined TWT Conceptual Designs

J.H. Booske1,3, C.L. Kory2, D. Gallagher3, V. Heinen3, K. Kreischer3, D.W. van der Weide1, S. Limbach1, P.J. Gustafson1, W.-J. Lee1, S.M. Gallagher1, K. Jain1

1 University of Wisconsin
and
2 Analex Corporation
and
3 Northrop Grumman Corporation

ICOPS 2001, June 17-22, Las Vegas, NV
Acknowledgement

Supported in part by:
D.o.D. Multidisciplinary University Research Initiative (MURI) for Innovative Vacuum Electronics,
US Air Force Office of Scientific Research,
Office of Naval Research Young Investigator Program,
and
University of Wisconsin
THz regime: the last electromagnetics frontier?

- Information technology
 - very high data-rate wireless comm
- Environment
 - atmospheric sensing
- Security
 - luggage scanning in airports
- Materials and materials processing
 - industrial process metrology and control
- Space science
 - THz astronomy, cosmochemistry
- Defense
 - chemical agent detection, digital and imaging radar
 - covert communication
 - space-space
 - short-range battlefield
- New compact source technology ⇒ new applications?

300 - 10,000 GHz

...the possibilities!
THz regime: the challenge

- The greatest obstacle to full realization of these applications is the lack of *compact* sources that are:
 - frequency agile
 - powerful
 - efficient
 - reliable, and
 - cheap

(Note: THz BWO’s are inefficient, and require bulky, heavy intense magnets)
Technology trade-offs

- Vacuum Electronics
 - efficient
 - spent beam collection
 - FEA cathodes
 - high power density
 - infinite electron mobility
 - no intrinsic frequency limit

- Solid State Electronics
 - precise miniature fabrication
 - devices made by patterning
 - replicate success
 - batch fab economy
 - good yields

= “micro-VEDs”
Micromachining

• Machining μm-scale 3D structures from 2D substrates
 – photo-lithography based
 – heights > 1 mm
 – exceptional wall quality
 – complex shapes possible

• Multiple techniques
 – LIGA (xray lithography molds + fill)
 – SU-8 (UV lithography + coating)
 – DRIE (etch silicon + coat/fill)
 – microEDM, microplasma machining

Come to the minicourse!
\(\mu \text{VEDs} \)

- Choose circuits amenable with 2D \(\rightarrow \) 3D
 - e.g., klystrons (Stanford, Leeds)
- Instantaneous bandwidth = TWTs

Folded Waveguide TWTs!
(Oscillators and Amplifiers)
Fabrication

- Etch serpentine as two halves in silicon wafer
- Coat walls with copper

or

- Electroform serpentine as two halves in PMMA mold (LIGA)

- Wafer-wafer bond
- High-resistivity Si for vacuum windows, lenses
- Arrays for higher power
Design and Analysis Tools

- Northrop Grumman Optimized Synthesis (OptSyn) Procedure
- Christine-1D (1D Parametric Code)
- TWA-3 (2.5D Parametric Code)
- MAFIA (3D PIC Code)
- Conceptual designs completed at 100 Ghz, 400 GHz, and 560 GHz
Oscillator Concept

- FWG TWT amplifier + feedback
- Reflected wave on serpentine too lossy
- Recirculate power through low-loss straight guide
Illustrative Example: 56 mW, 560 GHz

- Simulated
 - MAFIA (3D PIC)
 - CHRISTINE (1D disk)
560 GHz FWG TWT Forward Gain

1.8 mA + 6.6 mm long circuit

0.5 mA, 25 mm circuit
56 mW, 560 GHz FWG TWT Oscillator
(MAFIA, TWA3, Christine-1D)

~23 dB gain

2.5 cm

~ 1 cm

~5 dB loss

10.9 kV, 0.5 mA

56 mW, 560 GHz

η ~1%
Planned and In-Progress Research

- FWG oscillator experiments (UW&NGC)
 - Scaled (50 GHz)
 - what is the steady state?
 - vary feedback
 - compare with theory
 - High Frequency (~400 GHz)
- Circuit micromachining (UW, Argonne)
- Experimental studies of W-Band FWG
 - 100 GHz circuit characterization
 - Multiple Array FWG Circuit microfabrication
 - 100 W (CW), 85-100 GHz, 12 kV FWG Amplifier
- THz circuit characterization (UW)
Summary

• Opportunity: mmwave, THz-regime applications

• Challenge: 0.001-1 W sources at 300-1,000 GHz
 compact, efficient, low cost

• μVEDs: micromachined vacuum electron devices

• Folded waveguide TWTs
 amplifiers, oscillators (w/ recirculated feedback)

• Concept tests at 50 GHz (oscillator), 100 GHz (amplifier), 400 GHz (oscillator)

• 56 mW, 560 GHz, η ~ 1%